Document details

The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles

Author(s): Fernandes, Rosário cv logo 1 ; Fonseca, C. M. da cv logo 2

Date: 2008

Persistent ID: http://hdl.handle.net/10316/11145

Origin: Estudo Geral - Universidade de Coimbra

Subject(s): Inverse eigenvalue problem; Periodic Jacobi matrix; Eigenvalues; Multiplicities; Graphs; Cycle


Description
In 1979, Ferguson characterized the periodic Jacobi matrices with given eigenvalues and showed how to use the Lanzcos Algorithm to construct each such matrix. This article provides general characterizations and constructions for the complex analogue of periodic Jacobi matrices. As a consequence of the main procedure, we prove that the multiplicity of an eigenvalue of a periodic Jacobi matrix is at most 2. http://dx.doi.org/10.1080/03081080802187870
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU