Detalhes do Documento

Energy Transfer and Emission Decay Kinetics in Mixed Microporous Lanthanide Sil...

Autor(es): Evans, Rachel C. cv logo 1 ; Ananias, Duarte cv logo 2 ; Douglas, Alastair cv logo 3 ; Douglas, Peter cv logo 4 ; Carlos, Luis D. cv logo 5 ; Rocha, João cv logo 6

Data: 2008

Identificador Persistente: http://hdl.handle.net/10316/10659

Origem: Estudo Geral - Universidade de Coimbra


Descrição
We have investigated the energy transfer dynamics in mixed lanthanide open-framework silicates, known as Ln-AV-20 materials, with the stoichiometric formula Na1.08K0.5Ln1.14Si3O8.5·1.78H2O (Ln = Gd3+, Tb3+, Eu3+), using steady-state and time-resolved luminescence spectroscopy. Energy transfer between donor and acceptor Ln3+ ions is extremely efficient, even at low molar ratios of the acceptor Ln3+ (<5%). The presence of two different Ln3+ environments makes the Ln-AV-20 intralayer structure intermediate between purely one-dimensional (1D) and two-dimensional (2D). The unusual dimensionality of the Ln-AV-20 layers prevents modeling of energy transfer kinetics by conventional kinetic models. We have developed a computer modeling program for the analysis of energy transfer kinetics in systems of unusual dimensions and show how it may be applied successfully to the AV-20 system. Using the program, nearest neighbor energy transfer rate constants are calculated as (5.30 ± 0.07) × 106 and (6.00 ± 0.13) × 106 s-1, respectively, for Gd/Tb- and Tb/Eu-AV-20 at 300 K. With increasing acceptor concentration, the energy transfer dynamics tend toward purely one-dimensional behavior, and thus, with careful selection of the ratio of individual Ln3+ ions, it is possible to tune the energy transfer dimensionality of the AV-20 layers from pure 1D to something intermediate between 1D and 2D. http://dx.doi.org/10.1021/jp0747104
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia