Document details

CLIQUE COMMUNITIES IN SOCIAL NETWORKS

Author(s): Santos, Jorge cv logo 1 ; Cavique, Luís cv logo 2 ; Mendes, Armando cv logo 3

Date: 2012

Persistent ID: http://hdl.handle.net/10174/7676

Origin: Repositório Científico da Universidade de Évora

Subject(s): Data mining; social networks; graph mining


Description
There is a pressing need for new pattern recognition tools and statistical methods to quantify large graphs and predict the behaviour of network systems, due to the large amount of data which can be extracted from the web. In this work a graph mining metric, based on k-clique communities, is used, allowing a better understanding of the network structure. The proposed metric shows that for different graph families correspond different k-clique sequences.
Document Type Part of book or chapter of book
Language Portuguese
Editor(s) Kun-Huang, Huarng; Moutinho, Luiz
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo


    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU