Document details

Age constraints on the Late Cretaceous alkaline magmatism on the West Iberian M...

Author(s): Miranda, Rui cv logo 1 ; Valadares, Vasco cv logo 2 ; Terrinha, Pedro cv logo 3 ; Mata, João cv logo 4 ; Azevedo, Maria do Rosário cv logo 5 ; Gaspar, Miguel cv logo 6 ; Kullberg, José Carlos cv logo 7 ; Ribeiro, Carlos cv logo 8

Date: 2009

Persistent ID: http://hdl.handle.net/10174/6411

Origin: Repositório Científico da Universidade de Évora

Subject(s): Geochronology; Alkaline magmatism; Wesy Iberian Margin; Late Cretaceous


Description
The onshore sector of theWest Iberian Margin (WIM) was the locus of several cycles of magmatic activity during the Mesozoic, the most voluminous of which was of alkaline nature and occurred between 70 and 100 Ma. This cycle took place in a post-rift environment, during the 35 counter-clockwise rotation of Iberia and initiation of the alpine compression. It includes the subvolcanic complexes of Sintra, Sines, and Monchique, the volcanic complex of Lisbon and several other minor intrusions, covering an area of approximately 325 km2. Previous cycles were tholeiitic and transitional in nature, occuring around 200 Ma and 130–135 Ma, respectively. New LA-ICP-MS U-Pb, 40Ar/39Ar, K-Ar and Rb-Sr ages on several intrusions distributed along the onshore WIM are presented, which combined with reviously published data allows us to constrain the duration of the Late Cretaceous alkaline cycle to circa 22 Ma (94–72 Ma) and define two pulses of magmatic activity. The first one (94–88 Ma) occurred during the opening of the Bay of Biscay and consequent rotation of Iberia and clusters above N38 200 . The second pulse (75–72 Ma) has a wider geographical distribution, from N37 to N39 . This final pulse occurred during the initial stages of the Alpine orogeny in Iberia that led to the formation of the Pyrenees and Betics and to tectonic inversion of the Mesozoic basins. Isotope and trace element geochemistry point to a sublithospheric source for the alkaline magmatism that clearly distinguishes it from the previous cycles which had an important lithospheric mantle component. Also, it allows the discrimination between the two different alkaline pulses in terms of trace element abundance and residual mantle minerology. It is speculated that these differences might be the result of distinct magma ascent rates due to either more or less favourable tectonic settings that avoided or allowed the interaction with metasomatized lithosphere and equilibration with K rich minerals like amphibole and/or phlogopite.
Document Type Article
Language Portuguese
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU