Detalhes do Documento

COMPUTING TOPOLOGICAL INVARIANTS IN BOUNDARY VALUE PROBLEMS REDUCIBLE TO DIFFER...

Autor(es): Severino, Ricardo cv logo 1 ; Sharkovsky, Alexander cv logo 2 ; Sousa Ramos, José cv logo 3 ; Vinagre, Sandra cv logo 4

Data: 2007

Identificador Persistente: http://hdl.handle.net/10174/5558

Origem: Repositório Científico da Universidade de Évora


Descrição
Among boundary values problems (BVP) for partial differential equations there are certain classes of problems reducible to difference equations. Effective study of such problems has became possible in the last 20-30 years owing to appreciable advances done also in the theory of difference equations with discrete time, specifically given by one-dimensional maps. Here we apply how this reduction method may be used in simple nonlinear BVP, determined by a bimodal map. We consider two-dimensional linear hyperbolic system with constant coefficients, with nonlinear boundary conditions and usual initial conditions. The objective is to characterize the dependence of the motions of the vortice solutions with the topological invariants of the bimodal map.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia