Autor(es):
Severino, Ricardo
; Sharkovsky, Alexander
; Sousa Ramos, José
; Vinagre, Sandra
Data: 2006
Identificador Persistente: http://hdl.handle.net/10174/5556
Origem: Repositório Científico da Universidade de Évora
Assunto(s): boundary value problems; Chua’s circuit; difference equations; one-dimensional maps; symbolic dynamics; topological invariants
Descrição
In the last 30 years, some authors have been studying several classes of boundary value problems (BVP) for partial differential equations (PDE) using the method of reduction to obtain a difference equation with continuous argument which behavior is determined by the iteration of a one-dimensional (1D) map (see, for example, Romanenko, E. Yu. and Sharkovsky, A. N., International Journal of Bifurcation and Chaos 9(7), 1999, 1285–1306; Sharkovsky, A. N., International Journal of Bifurcation
and Chaos 5(5), 1995, 1419–1425; Sharkovsky, A. N., Analysis Mathematica Sil 13, 1999, 243–255; Sharkovsky, A. N., in “New Progress in Difference Equations”, Proceedings of the ICDEA’2001, Taylor and Francis, 2003, pp. 3–22; Sharkovsky, A. N., Deregel, Ph., and Chua, L. O., International Journal of Bifurcation and Chaos 5(5), 1995, 1283–1302; Sharkovsky, A. N., Maistrenko, Yu. L., and Romanenko, E. Yu., Difference Equations and Their Applications, Kluwer, Dordrecht, 1993.). In this paper we consider the time-delayed Chua’s circuit introduced in (Sharkovsky, A. N., International Journal of Bifurcation and Chaos 4(5), 1994, 303–309; Sharkovsky, A. N., Maistrenko, Yu. L., Deregel, Ph., and Chua, L. O., Journal of Circuits, Systems and Computers 3(2), 1993, 645–668.) which behavior is determined by properties of one-dimensional map, see Sharkovsky, A. N., Deregel, Ph., and Chua, L. O., International Journal of Bifurcation and Chaos 5(5), 1995, 1283–1302; Maistrenko, Yu. L., Maistrenko, V. L., Vikul, S. I., and Chua, L. O., International Journal of Bifurcation and Chaos 5(3), 1995, 653–671; Sharkovsky, A. N., International Journal of Bifurcation and Chaos 4(5), 1994, 303–309; Sharkovsky, A. N., Maistrenko, Yu. L., Deregel, Ph., and Chua, L. O., Journal of Circuits, Systems and Computers 3(2), 1993, 645–668. To characterize the time-evolution of these circuits we can compute the topological entropy and to distinguish systems with equal topological entropy we introduce a second topological invariant.