Document details

senti.ue-en: an approach for informally written short texts in semeval-2013 sen...

Author(s): Saias, jose cv logo 1 ; Fernandes, Hilário cv logo 2

Date: 2013

Persistent ID: http://hdl.handle.net/10174/10342

Origin: Repositório Científico da Universidade de Évora

Subject(s): opinion mining; sentiment analysis; NLP; Machine Learning


Description
This article describes a Sentiment Analysis (SA) system named senti.ue-en, built for participation in SemEval-2013 Task 2, a Twitter SA challenge. In both challenge subtasks we used the same supervised machine learning approach, including two classifiers in pipeline, with 22 semantic oriented features, such as polarized term presence and index, and negation presence. Our system achieved a better score on Task A (0.7413) than in the Task B (0.4785). In the first subtask, there is a better result for SMS than the obtained for the more trained type of data, the tweets.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo


    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU