Document details

Artificial neural networks in the discrimination of alzheimer’s disease

Author(s): Rodrigues, Pedro cv logo 1 ; Teixeira, João Paulo cv logo 2

Date: 2011

Persistent ID: http://hdl.handle.net/10198/9734

Origin: Biblioteca Digital do IPB

Subject(s): Alzheimer’s disease; Electroencephalogram; Artificial neural networks; Short time fourier transform; Wavelet transform


Description
Alzheimer’s disease (AD) is the most common cause of dementia, a general term for memory loss and other intellectual abilities. The Electroencephalogram (EEG) has been used as diagnosis tool for dementia over several decades. The main objective of this work was to develop an Artificial Neural Network (ANN) to classify EEG signals between AD patients and Control subjects. For this purpose two different methodologies and variations were used. The Short time Fourier transform (STFT) was applied to one of the methodologies and the Wavelet Transform (WT) was applied to the other methodology. The studied features of the EEG signals were the Relative Power in conventional EEG bands (delta, theta, alpha, beta and gamma) and their associated Spectral Ratios (r1, r2, r3 and r4). The best classification was performed by the ANN using the WT Biorthogonal 3.5 with AROC of 0.97, Sensitivity of 92.1%, Specificity of 90.8% and 91.5% of Accuracy.
Document Type Conference Object
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU