Detalhes do Documento

Ionic regulation and shell mineralization in the bivalve Anodonta cygnea follow...

Autor(es): Lopes-Lima, Manuel cv logo 1 ; Freitas, Susana cv logo 2 ; Pereira, Liliana cv logo 3 ; Gouveia, Eugénia cv logo 4 ; Hinzmann, M. cv logo 5 ; Checa, Antonio cv logo 6 ; Machado, Jorge cv logo 7

Data: 2012

Identificador Persistente: http://hdl.handle.net/10198/8005

Origem: Biblioteca Digital do IPB


Descrição
Freshwater mussels are one of the most imperiled faunistic groups in the world and environmental exposure to toxic heavy metals, which result in deregulation of calcium absorption and deposition in the laboratory, may be a contributing factor in their decline. To address potential effects of heavy-metal exposure on calcium transport and metabolism in freshwater bivalves, adult Anodonta cygnea (L., 1758) were exposed to a sublethal concentration (1.0 × 10−6 mol/L) of essential (Zn2+ and Cu2+) or nonessential (Pb2+ and Cr3+) metal for 30 days in the laboratory. Inorganic composition of extrapallial, haemolymph, heart, and pericardium fluids, and kidney tissue, as well as shell morphology by scanning electron microscopy, were compared in treated and untreated mussels. Calcium levels in fluids varied after exposure to any of the metals investigated, although the magnitude and threshold of effect were metal- and compartment-specific. Ca2+ levels increased robustly in all fluids following exposure to Zn2+, Cu2+, or Cr3+, whereas levels decreased significantly in heart fluid alone following Pb2+ exposure (p < 0.05). In constrast to exposure to the other metals, Cu2+ revealed an interesting reverse-accumulation pattern, decreasing in the fluids but not in the kidney, where it clearly accumulates for excretion. In addition, whereas essential Cu2+ and Zn2+ are closely regulated, the nonessential metals Pb2+ and Cr3+ increase to very high levels. Drastic alterations in shell morphology, specifically the structure of border and inner pallial regions of the nacreous layer, were observed after Cu2+ or Cr3+ exposure. Collectively, data suggest that prolonged exposure to a sublethal concentration of these heavy metals can adversely affect compartmental calcium availability and shell composition in A. cygnea.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia