Document details

Assessment of a hybrid approach for nonconvex constrained MINLP problems

Author(s): Fernandes, Florbela P. cv logo 1 ; Costa, M. Fernanda cv logo 2 ; Fernandes, Edite M.G.P. cv logo 3

Date: 2011

Persistent ID: http://hdl.handle.net/10198/5884

Origin: Biblioteca Digital do IPB

Subject(s): Mixed-integer programming; Branch-and-bound; Genetic algorithm


Description
A methodology to solve nonconvex constrained mixed-integer nonlinear programming (MINLP) problems is presented. A MINLP problem is one where some of the variables must have only integer values. Since in most applications of the industrial processes, some problem variables are restricted to take discrete values only, there are real practical problems that are modeled as nonconvex constrained MINLP problems. An efficient deterministic method for solving nonconvex constrained MINLP may be obtained by using a clever extension of Branch-and-Bound (B&B) method. When solving the relaxed nonconvex nonlinear programming subproblems that arise in the nodes of a tree in a B&B algorithm, using local search methods, only convergence to local optimal solutions is guaranteed. Pruning criteria cannot be used to avoid an exhaustive search in the search space. To address this issue, we propose the use of a genetic algorithm to promote convergence to a global optimum of the relaxed nonconvex NLP subproblem. We present some numerical experiments with the proposed algorithm.
Document Type Conference Object
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU