Detalhes do Documento

Region-based clustering for lung segmentation in low-dose CT images

Autor(es): Monteiro, Fernando C. cv logo 1

Data: 2010

Identificador Persistente: http://hdl.handle.net/10198/2631

Origem: Biblioteca Digital do IPB

Assunto(s): Lung segmentation; Graph clustering; Watershed transform; Pulmonary CT image


Descrição
Lung segmentation in thoracic computed tomography scans is essential for the development of computer-aided diagnostic methods for identifying the lung diseases. Low-dose CT scans are increasingly utilized in lung studies, but segmenting them with traditional threshold segmentation algorithms often yields less than satisfying results. In this paper we present a hybrid framework to lung segmentation which joints region-based information based on watershed transform with clustering techniques. The proposed method eliminates the task of finding an optimal threshold and the over-segmentation produced by watershed. We have applied our approach on several pulmonary low-dose CT images and the results reveal the robustness and accuracy of this method.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia