Detalhes do Documento

Computação algébrica no cálculo das variações: determinação de simetrias e leis...

Autor(es): Gouveia, Paulo D.F. cv logo 1 ; Torres, Delfim F.M. cv logo 2

Data: 2005

Identificador Persistente: http://hdl.handle.net/10198/1771

Origem: Biblioteca Digital do IPB

Assunto(s): Cálculo das variações; Euler-Lagrange; Leis de conservação; Computação algébrica


Descrição
Os problemas de optimização dinâmica (em espaços de funções) tratados pelo cálculo das variações, são normalmente resolvidos por recurso às condições necessárias de Euler-Lagrange, que são equações diferenciais de segunda ordem (ou de ordem superior, quando os problemas variacionais envolvem derivadas de ordem superior a um). Estas equações são, em geral, não lineares e de difícil resolução. Uma forma de as simplificar consiste em obter leis de conservação: primeiros integrais das equações diferenciais de Euler-Lagrange. Se em áreas como a Física e a Economia a questão da existência de leis de conservação é resolvida de forma bastante natural, a própria aplicação sugerindo as leis de conservação (e.g. conservação de energia, conservação da quantidade de movimento, conservação do rendimento, etc.), de um ponto de vista estritamente matemático, dado um problema do cálculo de variações, o processo de obtenção das leis de conservação ou, até mesmo, a demonstração de que elas existem (ou não), deixa de ser uma questão óbvia. Neste trabalho mostramos como um sistema de computação algébrica como o Maple pode ser muito útil na abordagem a estas questões. Especificamente, propomos, como principal contribuição do nosso trabalho, um conjunto de facilidades computacionais simbólicas que permitem, de uma forma sistemática e automática, identificar as leis de conservação de uma dada funcional integral do cálculo das variações.
Tipo de Documento Artigo
Idioma Português
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia