Detalhes do Documento

Application of adaptive methods based on finite difference discretizations in t...

Autor(es): Brito, Paulo cv logo 1 ; Portugal, António cv logo 2

Data: 1998

Identificador Persistente: http://hdl.handle.net/10198/1281

Origem: Biblioteca Digital do IPB

Assunto(s): Adaptive methods; Partial differential equations; Finite difference approximations; Tubular reactor


Descrição
In this paper two adaptive algorithms are presented for the solution of systems of evolutive one-dimensional Partial Differential/ Algebraic Equations (PDAEs). The temporal integration is coupled with a spatial adapting strategy. The identification of the spatial subdomains. where a regridding technique is introduced, is done through the comparison of the solutions computed with two fixed grids of different sizes. The subproblems generated are solved by two adaptive strategies: the Grid Refinement Method (GRM), that promotes the refinement of the subgrids detected in the previous step, and the Moving Mesh Method (MMM) includes an additional differential equation for the nodal mobility. The two algorithms proposed were successfully applied to the solution of an nonisothermal tubular reactor pseudo-homogeneous model described by two PDEs referring to reagent concentration and system temperature dynamics. The performance of each algorithm is compared to the results obtained by [3], based on the application of a formulation of the Moving Finite Elements Method, with cubic Hermite polynomials approximations.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo


    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia