Detalhes do Documento

Allelic penetrance approach as a tool to model twolocus

Autor(es): Sepúlveda, Nuno cv logo 1 ; Paulino, Carlos Daniel cv logo 2 ; Carneiro, Jorge cv logo 3 ; Penha-Gonçalves, Carlos cv logo 4

Data: 2007

Identificador Persistente: http://hdl.handle.net/10400.7/115

Origem: ARCA - Access to Research and Communication Annals

Assunto(s): Reduced penetrance; Allelic penetrance; External penetrance; Epistasis


Descrição
Many binary phenotypes do not follow a classical Mendelian inheritance pattern. Interaction between genetic and environmental factors is thought to contribute to the incomplete penetrance phenomena often observed in these complex binary traits. Several two-locus models for penetrance have been proposed to aid the genetic dissection of binary traits. Such models assume linear genetic effects of both loci in different mathematical scales of penetrance, resembling the analytical framework of quantitative traits. However, changes in phenotypic scale are difficult to envisage in binary traits and limited genetic interpretation is extractable from current modeling of penetrance. To overcome this limitation, we derived an allelic penetrance approach that partitioned incomplete penetrance into the alleles controlling the phenotype and into the genetic background and environmental factors. We applied this approach to formulate dominance and recessiveness in a single biallelic locus and to model different genetic mechanisms for the joint action of two biallelic loci. We fit the models to data on the susceptibility of mice following infections with Listeria monocytogenes and Plasmodium berghei. These models gain in genetic interpretation, because they specify the alleles that are responsible for the genetic (inter)action and their genetic nature (dominant or recessive), and predict genotypic combinations determining the phenotype. Further, we show via computer simulations that the proposed models produce penetrance patterns not captured by traditional twolocus models. This approach provides a new analysis framework for dissecting mechanisms of interlocus joint action in binary traits using genetic crosses.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia