Detalhes do Documento

Bayesian analysis of allelic penetrance models for complex binary traits

Autor(es): Sepúlveda, Nuno cv logo 1 ; Paulino, Carlos Daniel cv logo 2 ; Penha-Gonçalves, Carlos cv logo 3

Data: 2009

Identificador Persistente: http://hdl.handle.net/10400.7/111

Origem: ARCA - Access to Research and Communication Annals

Assunto(s): Incomplete penetrance; Susceptibility genes; Epistasis; Diseases


Descrição
Complex binary traits result from an intricate network of genetic and environmental factors. To aid their genetic dissection, several generalized linear models have been described to detect interaction between genes. However, it is recognized that these models have limited genetic interpretation. To overcome this problem, the allelic penetrance approach was proposed to model the action of a dominant or a recessive allele at a single locus, and to describe two-locus independent, inhibition, and cumulative actions. Classically, a recessive inheritance requires the expression of both recessive alleles in homozygotes to obtain the phenotype (type I recessiveness). In previous work, recessiveness was defined alternatively as a situation where a recessive allele is able to express the phenotype when the dominant allele is not active (type II recessiveness). Both definitions of recessiveness are then discussed under the allelic penetrance models. Bayesian methods are applied to analyze two data sets: one regarding the effect of the haplotype [HLA-B8, SC01, DR3] on the inheritance of IgD and IgG4 immunoglobulin deficiencies in humans, and other related to two-locus action in the control of Listeria infection susceptibility in mice.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia